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Abstract The lexicons of natural language can be characterized as a network of
words, where each word is linked to phonologically similar words. These networks are
called phonological neighbourhood networks (PNN5). In this paper, we investigate the
extent to which observed properties of these networks are mathematical consequences
of the definition of PNNs, consequences of linguistic restrictions on what possible
words can sound like (phonotactics), or consequences of deeper cognitive constraints
that govern lexical development. To test this question, we generate random lexicons,
with a variety of methods, and derive PNNs from these lexicons. These PNNs are
then compared to a real network. We conclude that most observed characteristics
of PNNs are either intrinsic to the definition of PNNs, or are phonotactic effects.
However, there are some properties—such as extreme assortativity by degree—which
may reflect true cognitive organizing principles.

1 Introduction

In natural languages, sentences are composed of words, which are in turn composed
of strings of symbols referred to as phonemes, which represent the smallest units of
sound that can be used to distinguish words from each other. Many psycholinguistic
theories of spoken word recognition and infant language acquisition rely on a concept
of the phonological similarity of words, termed neighbourhood, which is defined
in terms of the phonemic structure of words. Two words are neighbours of each
other if they differ by the deletion, addition, or substitution of one and only one
segment—that is, an edit distance of one. For example, neighbours of plan include
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Fig. 1 Example phonologi-

cal neighbourhood network clan
centred around the English plane
word plan. Note that it is

the sound of a word, not the plaque /

spelling, which determines the T~

phonological neighbours. Note plan ——— plant
further that some neighbours /

of a word are neighbours of pan /
each other.

____flan

planner
~

1
prans — planned

pan (deletion of /1/), plant (addition of /t/), and clan (substitution of /k/ for /p/). See
Figure 1 for a visual example.' The neighbourhood relation is symmetric, intransitive
and anti-reflexive.

For a given lexicon, then, it is possible to construct a complex network to model
phonological neighbourhood relations throughout the language. Phonological neigh-
bourhood networks (PNNs) have been used to study aspects of lexical organization
in several languages [1, 16, 20]. In this paper, we explore the extent to which these
complex network analyses can provide insight into the psychological organization of
human language.

Vitevitch [20] first proposed the use of PNNs to study the phonological aspects of
lexicons. In a PNN, every word in the lexicon is a vertex in a graph, and two vertices
are linked by an edge if a neighbourhood relation obtains between the two words.
This process yields an undirected, unweighted graph, ideal for examination with the
tools of complex network analysis.

Early work on PNNs, in a variety of languages, has demonstrated that these
networks have distinct properties which differ in important ways from other complex
networks studied in the literature [1, 20]. For example, while most complex networks
typically have a giant component which contains around 80-90% of the vertices,
the observed values for PNNs fall between 10% and 65% [1, 16]. PNNs were also
found to be remarkably robust to vertex removal, with the average shortest path
length remaining the same when up to 5% of vertices were removed. Notably, this
effect held regardless of whether vertex removal was at random or in order of degree
[1]. Despite these differences from other networks, the high clustering coefficients
established that PNNs exhibit small world properties.

However, these statistics and examinations rely on comparing the observed net-
works to random networks [14]. While this approach is reasonable for many kinds
of complex networks, it is not an appropriate comparison for PNNs. Unlike other
networks, where vertices exist independently of each other and edges can be made

! Note that neighbourhood is defined based on the pronunciation of a word, not the spelling. For
instance, while the spelling of the words knee and neat are quite different, the pronunciations are
very similar. The addition or deletion of the /t/ sound will transform knee into neat and vice versa.
Therefore, these words are neighbours. On the other hand, the words fough and though have very
similar spellings, but their pronunciations—/taf/ and /dou/ respectively—are very different. These
words are not neighbours.
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or unmade (for example, friendships made or broken, shipping routes established
or abandoned), in a PNN the edges (neighbourhood relations) are intrinsic to the
definition of the vertices themselves (the phonological structure of the words). That
is, because edges exist between two vertices if and only if the two words are phono-
logical neighbours, there are certain graphs which are not possible PNNs.

One such graph is shown in the left of Fig. 2. Here, each vertex is connected
to every other vertex, with two exceptions: vertices 1 and 3 are not connected,
and vertices 2 and 4 are not connected. It not possible for this graph to have its
vertices labelled such that the shortest path from vertex-to-vertex is equal to the
edit distance (Hamming distance) of the vertex labels [9]. In other words, this graph
cannot represent neighbourhood relations between words. On the other hand, the
graph on the right of Fig. 2 is plausibly a PNN, with the mapping O=cant, 1=can,
2=cat, 3=cab, 4=cap.? Note that the graphs in Fig. 2 both have the same number of
vertices and edges, but the left one could not be a PNN while the right one could be.

The difference between these graphs is that the graph on the right is addressable,
that is, there exists a vertex labelling schema which satisfies the neighbourhood
relation, while the graph on the left is non-addressable [2]. Addressable graphs
have also been termed ¢;-graphs, as it can be shown that addressable graphs are
isometrically embeddable into a hypercube [6, 17]. Since the distances along the
edges of a hypercube fall under the definition of an ¢; metric, it follows that these
graphs are isometrically embeddable into an ¢; metric space [7]. The recognition of
such graphs can be solved in polynomial time [8, 11].

For these reasons, random graphs are inappropriate as comparison cases when
considering PNNs. Currently, it is not easy to tell if results obtained are generalizable
results about language and lexical organization, or if they are simply consequences
of the structure of an addressable graph [10]. It has further been noted that the
statistics of PNNs are very sensitive to the distribution of word lengths within a
lexicon and the number of phonemes in the language’s symbol set [16, 19]. For
example, given n phonemes, the number of possible words is an exponential term of

Fig. 2 Two graphs, both with

the same number of vertices

and edges. The graph on the

left is non-addressable. This e

graph could not represent a

PNN. The graph on the right

is addressable. This graph

could be represent a PNN.

Consider the mapping O=cant,

l=can, 2=cat, 3=cab, 4=cap.

Each vertex is connected to its 9

2 Other possible mappings include (Ozslow, 1=low, 2=sew, 3=go, 4:show); (0=lamp, 1=lamb,
2=lap, 3=lab, 4=lad); (0=gasp, 1=gas, 2=gap, 3=gag, 4=gash); (O=iode, 1=eyed, 2=ode, 3=aid,
4=add) and so on.
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n, while the number of possible neighbourhood connections is a linear term of n [19].
This fact has consequences for how cross-linguistic comparisons are carried out, as
languages differ in the sizes of their lexicons and their number of phonemes [16].
These difficulties make the use of complex network analysis in the study of PNNs a
complex undertaking.

In this study, we generate random lexicons, rather than random graphs. PNNs
are derived from these random lexicons, guaranteeing that the resulting graphs are
addressable. These simulated PNNs can be compared to real PNNs. In broad terms,
there are two possible outcomes to this investigation:

1. The simulated PNNs are indistinguishable from a real PNN.
2. The simulated PNNs differ from a real PNN.

In the case of (1), we can conclude that alleged properties of the human lan-
guage faculty relating to lexical organization [1] are simply consequences of the
mathematical structure of PNNSs. In this regard, the results could shed light on the
hypercube-embeddable graphs, but not on language.

In the case of (2), we can conclude that any areas of difference between the
simulated PNN and the real PNN are due to some organizing principle or cognitive
constraint operating on language. For example, to ensure efficient communication,
the lexicon may be organized to avoid having words which sound very similar [12].

2 Method

To address the question of which properties of PNNs are simply due to their definition
and which are due to linguistic principles, we generated random lexicons, derived
PNNs from these lexicons, and compared the properties of these PNNs to the PNN
of English. The PNN of English we used was derived from the Hoosier Mental
Lexicon [15], a dictionary of American English with phonological transcriptions of
19,320 words, after homophone removal. We refer to this lexicon and PNN as the
‘real English lexicon’ and ‘real English PNN’ to distinguish it from the simulated
(random) lexicons and PNNs that we generated.

2.1 Random lexicons

Each random lexicon had the same size and mean word length (6.35 phonemes), and
used the same inventory of phonemes, as the real English lexicon. Five groups of
random lexicons were generated, differing in the extent to which they approximate the
real English lexicon: uniform random lexicons; Zipfian random lexicons; scrambled
random lexicons; bigram random lexicons; and trigram random lexicons. Each group
consisted of 200 random lexicons.

The simplest group was the uniform random lexicons, which were created by
randomly sampling from the phoneme inventory in a unform manner. Word length
was sampled from a Poisson distribution (with A = 6.35). In these lexicons, while
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the overall properties of the lexicon (number and length of words) was the same as
that of the real English lexicon, the content of the words resemble what one would
obtain from random typing.

Zipfian random lexicons were created in the same manner, except that the sam-
pling from the phoneme inventory was not uniform. Instead, phonemes were fre-
quency ranked according to a Zipf distribution. That is, given N phonemes, the
probability of phoneme ¢, where k € {1,...,N} is given as

-1
(k) = £

e
Phoneme distributions in natural languages are approximately Zipfian [21]; these
lexicons therefore approximate more closely the structure of English than the uniform
random lexicons.

The scrambled random lexicons began with the real English lexicon and scram-
bled the order of the phonemes within each word. This scrambling disrupts the
neighbourhood structure of the words, while preserving the overall phoneme frequen-
cies exactly.

Of these three groups, the uniform random group approximates the average word
length of English; the Zipfian group the average word length and average phoneme
frequency; and the scrambled group matches word length and phoneme frequencies
exactly. An important difference between these groups and the real English lexicon
is that of phonotactics—higher-level generalizations about the combinatoric possi-
bilities of phonemes. The classical example is that neither blick nor bnick are actual
English words, but the former could be a word, while the latter could not. This is
due to a restriction in what consonant clusters English permits at the beginning of
syllables.?

Due to the lack of phonotactics in the randomly generated lexicons, any differences
between them and the real English lexicon could either be due to organizing principles
of lexical storage, or simply a consequence of the fact that phonotactics restrict the
possible words that can appear in a lexicon. To test for this possibility, the bigram
and trigram random lexicon groups were generated.

These random lexicons were generated by creating n-gram models of English
phoneme distributions, where n = 2 for the bigram random lexicons and n = 3 for
the trigram random lexicons. In these models, the probability of a given phoneme
is conditioned on the probability of the preceding n — 1 phonemes. (Kneser-Ney
discounting was applied to smooth the probability space for unobserved forms.)
In this way, the model is able to account for basic distributional facts of English
phonotactics—for example, vowels and consonants tend to alternate; the consonant
cluster ‘thl’ (as in decathlon) is rare, but the consonant cluster ‘str’ (as in string) is
common; and so on. Using this model, a lexicon the same size as the real English
lexicon was generated. Due to the fact that the n-gram models encodes the probability
of individual phonemes, and the ‘end-of-word’ character, these generated lexicons

3 Note that in some languages, like Russian, both blick and bnick are possible words, while in others,
like Japanese, neither are possible words.
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approximate the real English lexicon in terms of phoneme frequencies and mean
word length.

The bigram model yields English-like words, but there are exceptions, for example,
/#nd/, where # represents the beginning of a word. There are no English words that
begin with /nd/.* This situation arises due to the fact that the model can only ‘see’
two phonemes at a time. The sequence /#n/ (that is, the beginning of a word, followed
by /n/) is a frequent bigram sequence, and so it has relatively high probability;
likewise, the sequence /nd/ is frequent and also has a relatively high probability, and
so therefore there is a chance that the model will output sequences like /#nd/. The
trigram model, on the other hand, is able to see three phonemes at a time, notes that
/#nd/ is not attested in the original lexicon, and accordingly assigns this sequence
an extremely low probability. Thus, the trigram model is more English-like than the
bigram model. Still, phonotactics are considerably more complex than phoneme-level
n-gram probabilities, and the trigram model still produces words which sound quite
un-English-like. The use of complex phonotactic generators to create ‘English-like’
simulated lexicons can help alleviate this problem [12], but such an investigation is
beyond the scope of the current study.

To summarize, in terms of fidelity to English linguistic lexical patterns, these
random lexicon groups are expected to follow the following hierarchy:

uniform < Zipfian < scrambled < bigram < trigram

Comparison of these random lexicons with each other and with the real English
lexicon allows us to determine which observed properties of English are lexically
meaningful. If a property is true of all PNNS, it is likely to be a simple consequence
of the definition of the neighbourhood relation over lexicons, and does not necessarily
reveal anything about language. If a property is true of the real English PNN and the
n-gram PNNSs, but not the other random PNN:gs, it is likely to be a consequence of the
phonotactic patterns of the lexicon—hard limits on what shapes words can take. If a
property is true only of the English PNN but not any of the random PNNGs, then it is
likely to be due to a deeper organizing principle of the lexicon.

2.2 Network measures

For each group of PNNs, several network measures were taken.

e Giant component size: the size, as a ratio of the number of vertices in the entire
graph, of the largest connected component.

e Clustering coefficient: the mean clustering coefficient for each vertex in the
entire graph.

e Mean number of neighbours: the mean number of neighbours for each vertex in
the entire graph.

4 Even in borrowed words like Ndebele, a short vowel sound is usually inserted before the /n/.
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e Assortativity by degree [13]: the correlation coefficient of the degree of a vertex
with that of its neighbours, averaged over the entire graph. This measures the
extent to which highly-connected words cluster together.

e Shortest path: the average shortest path length for all pairwise comparisons.
Vertices which are not connected are ignored, essentially yielding a grand mean
of each connected component weighted by the number of vertices in each com-
ponent.

2.3 Robustness to vertex removal

To evaluate the relative robustness of each PNN, vertex removal was performed.
A proportion of vertices were removed, and the average shortest path of the graph
was measured. The procedure was then repeated with a larger proportion of vertices.
This procedure allows us to examine the change in the robustness of the network as
successively more vertices were removed.

Two vertex removal methods were employed: a random method, where vertices
were removed at random; and a targeted method, where vertices were removed in
decreasing order of degree. That is, the word with the most neighbours was removed
first, the word with the second most was removed second, and so on. We tested
removal proportions from 0 to 0.05, in 21 equally-spaced steps. Two measures of
network robustness were used: giant component size and average shortest path. We
follow convention in assuming that larger giant component size and smaller shortest
path represent more robust networks.

3 Results

Table 1 summarizes the results for the real English PNN and of the five groups of
random PNNs.

3.1 Overall patterns

For giant component size, clustering coefficient, and mean number of neighbours,
the statistics obeyed the following hierarchy:

uniform < Zipfian < scrambled < bigram ~ trigram ~ English

That is, the n-gram PNNs were very similar to the real English PNN, while the
other random PNNs had lower values as a function of their projected similarity to
English. Nevertheless, while the other random PNNs were not similar to English,
their statistics do indicate some small-world properties, as previously reported [1, 20].

The size of the real English PNN giant component is still smaller than most
scale-free networks studied in the literature [14]. The fact that the real English
PNN regardless has the largest giant component of all the PNNs suggests that the
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English lexicon has clusters of highly-connected words [18]. For this to happen, the
lexicon must employ a large degree of re-use of common elements and sequences
of phonemes. It has been theorized that such re-use is beneficial for the developing
lexicon in infant and child language acquisition [3], and aids in the processes of
speech production and perception in adults [4, 5].

All the PNNs examined are assortative by degree: words with many neighbours
tend to cluster together. Assortativity was higher for the n-gram random PNNs than
the other random PNNSs, and it was highest of all for the English PNN. Taken together,
these results suggest that the property of assortativity in general is intrinsic to PNNs,
but that it is enhanced by the presence of phonotactics, and enhanced further by
unknown lexical organizational constraints.

The real English PNN had neither the longest nor the shortest mean shortest path
length. This value does not appear to readily distinguish the real English PNN from
the random PNNs, nor does it distinguish the different random PNNs from each
other.

Table 1: Summary statistics for the real English PNN and the five groups of random
PNNs. Standard deviations included in parentheses. GC: giant component; Clust.:
clustering; Sh.: shortest.

GCsize Clust. coeffi-Mean # neigh- Assortativity Sh. path

cient bours
Uniform .023 .009 (.001) 0.108 (0.010) .540 (.045) 6.032
(.002) (0.334)
Zipfian .100 .034 (.002) 0.628 (0.032) 240 (.021) 4.835
(.003) (0.073)
Scrambled .167 .046 (.001) 0.710 (0.010) 427 (.019) 7.057
(.002) (0.091)
Bigram .286 .106 (.002) 2.604 (0.050) 459 (.009) 5.242
(.004) (0.038)
Trigram 371 .138 (.002) 3.018 (0.055) .538 (.008) 6.432
(.005) (0.068)
English .320 117 2.675 .643 6.991

3.2 Vertex removal

The patterns of robustness to vertex removal are shown in Fig. 3 for giant component
size, and Fig. 4 for average shortest path length. For all groups of PNNs, random
vertex removal does not appear to influence giant component size, while targeted
vertex removal leads to a decline in giant component size. However, it can be seen
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that the fall is very sharp for the uniform, Zipfian, and scrambled PNNs (rapidly
reaching zero), while the slope is much gentler for the bigram, trigram, and real
English PNNs.

The same pattern is observed for the shortest path length: no change for random
removal, rapid increase for targeted removal for the uniform, Zipfian, and scrambled
PNNs, and gentle increase for targeted removal for the bigram, trigram, and real
English PNNs. After a point, the shortest path lengths for the uniform, Zipfian, and
scrambled PNNss fall; this is a consequence of the rapid fragmenting of the graph
into many isolated islands, and does not reflect an increase in robustness. (Note that
the falls coincide with the giant component size approaching zero.)

These results demonstrate that, while the real English PNN is remarkably robust
to both random and targeted vertex removal [1], the same is true of the bigram and
trigram random PNNs. The observed robustness is therefore not necessarily due to
an organizing principle of lexical structure, but phonotactic limitations on possible
words.

Vertex removal method random 4 targeted
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Fig. 3: Giant component size for the five random groups of PNNs, plus the real
English PNN, given two vertex removal methods, plotted as a function of the propor-
tion of vertices removed. Red circles depict values for random vertex removal; blue
triangles depict values for targeted vertex removal.
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Vertex removal method random 4 |targeted
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Fig. 4: Shortest path lengths for the five random groups of PNNSs, plus the real English
PNN, given two vertex removal methods, plotted as a function of the proportion of
vertices removed. Red circles depict values for random vertex removal; blue triangles
depict values for targeted vertex removal.

4 Discussion

For both the real English PNN and the random PNNs, the clustering coefficients
were relatively high, confirming the assertion that PNNs have small-world properties
[1]. However, as this was observed for the random PNNs too, it would appear to
be a property intrinsic to the definition of a PNN, and therefore not necessarily
psycholinguistically meaningful.

In terms of giant component size and mean number of neighbours, the real English
PNN was midway between the bigram and trigram random PNNs, suggesting that
these properties are due to phonotactics rather than any deeper constraints which
may modulate the development of the lexicon.

However, where the real English PNN stood out from the random PNNs was
in assortativity by degree. While all the PNNs were assortative, the real English
PNN was the most of all. It is possible that this high level of assortativity aids in
lexical retrieval by limiting the spread of activation to irrelevant candidate words in
the process of speech perception [20]. However, the mechanisms by which the real
English PNN obtains this high level of assortativity is unknown.

Finally, the vertex removal analysis demonstrated that while the real English
PNN and the n-gram PNNs were very robust to targeted vertex removal, the other
random PNNs rapidly lost robustness. In this regard, the non-n-gram random PNNs
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are similar to scale-free networks, in that the mean shortest path length rapidly
increases upon targeted vertex removal [14]. This finding suggests that the robustness
observed by [1] is not necessarily due to a particular cognitive constraint on lexical
organization, but a consequence of phonotactics.

5 Conclusion

With a novel method for generation of random PNNs, we have shown that some
properties of PNNs—such as small world properties, small giant component size,
and assortativity by degree—are due to the definition of the neighbourhood relation
that defines PNNSs, rather than properties of language per se. Others properties are
common to the real PNN and n-gram PNNs, which simulate the phonotactic patterns
of natural language. For example, the n-gram PNNs are indistinguishable from the
real PNN in terms of giant component size, clustering coefficients, and mean number
of neighbours, and all are equally robust to vertex removal. These properties are
likely due to phonotactics, rather than the definition of the neighbourhood relation or
any underlying cognitive constraints.

A promising avenue for further study is the strong assortativity observed on the
real PNN relative to the random PNNs, suggesting that there could be principles
and mechanisms governing the structure of the lexicons of human languages which
enhance the assortativity of the network. Whether these principles operate over
milliseconds (i.e. they are caused by patterns of cognitive processing) or generations
(i.e. they are caused by patterns of cultural evolution) is a promising question for
future research. Replicating these results for languages other than English is also a
crucial step in establishing the true nature of PNNs.
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